Superbosonization

(a new effective-field method for random matrix and disordered electron systems with local gauge symmetries)

M. Zirnbauer

Brunel University (December 17, 2007)

•	Ri	•	~		

Symmetric spaces

Riemannian symmetric superspaces: definition

Consider sections of (F_x) *M* (superfunctions), *M* with values (x) (F_x)

/ 4

Example (continued)

Lie superalgebra $\begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix}$ $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix}$

Important:

Background & motivation (continued)

Pruisken-Schäfer domain

Rv v: $v^{t}sv$ 0 space-like, $v^{t}sv$ 0 time-like, **O**

Every $O_{p,q}$ diagonalizable matrix *R* has *p* space like and *q* time like eigenvalues.

Encode ordering by motif, e.g., (R) **o co** $(p \ q \ 3)$. Associate with each motif a domain *D* by closure.

Pruisken Schäfer domain $D \cup D$ is a union

of
$$\begin{array}{ccc} p & q & p & q \\ p & q \end{array}$$
 domains. Each *D* is $O_{p,q}$ invariant.

D D for has co dimension 2.

Corollary

- Formulation in terms of eigenvalues: Let $R = g = g^{-1}$
 - with diag $(1, ..., p_q)$ and $g SO_{p,q}$. Volume element
 - $dR \mid J() \mid d \mid dg$ where $\mid d \mid = \frac{p \mid q}{i \mid 1} d_{i}$ and dg Haar

 $SO_{p,q}$. J cs 0 0.35294) 0.78431 scn 34.26 73.431 10.38 11.22 ref

Two domains for p = q = 1

Reorganization of boundary components

Superbosonization

- P. Littelmann, H.-J. Sommers, M.R.Z., Commun. Math. Phys. (in press)
- J.E. Bunder, K.B. Efetov, V.E. Kravtsov, O.M. Yevtushenko, M.R.Z., J. Stat. Phys. 129 (2007) 809

Special case: commuting variables only

- Let p = 1, q = 0 and consider GL_N invariant holomorphic function $f: \stackrel{N}{=} (\stackrel{N}{=}) , f(z,\tilde{z}) = f(gz,\tilde{z}g^{-1}), g = GL_N.$
 - Fact (from invariant theory): there exists a holomorphic function F: such that $F(\tilde{z} \ z) \ f(z, \tilde{z})$.

By push forward of the integral one has

 $\int_{N} f(z, z) d^{2N} z = c_N = F(r) r^{N-1} dr$ (if the integral exists).

generalization: see Fyodorov, Nucl. Phys. B 621 (2002) 643

Symmetry argument (heuristic)

Pullback fF. Compare two distributions:Distribution 1: $_1[F]$ $_{\tilde{7},7}$

Distribution 2: $_{2}[F] \quad _{M} DQ \text{ SDet}^{N/2}(Q) F(Q)$

For g OSp_{2p|2q} let $F_g(Q)$: $F(gQg^T)$. The transformation behavior is the same : ${}_A[F_g]$ SDet ${}^N(g) {}_A[F]$ (A 1,2).

1	Comments
•	

Application: Wegner's N-orbital model, U(N)

Hilbert space V_{i} , orthogonal projector $_{i}: V V_{i}$: $e^{i \operatorname{Tr} HK} d(H) e^{(1/2N)} e^{i \int_{i,j}^{C_{ij} \operatorname{Tr} K} K_{j}}$