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1 Introduction

1.1 Asymptotic ”Philosophy” of RMT

Let Mn be a n





(ii) Nn ! N weakly as n!1;
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i.e., (nN(�))�1 is the typical eigenvalue spacing for large n in �.

Assume � � supp N , then

� � does not depend on n (in the global scale), i.e., nN(�) ’ n: global

(macroscopic) regime;

� nN(�) ’ 1: local (microscopic) regime;
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UNIVERSALITY: the independence (to a certain extent) of a given regime on

the random matrix (ensemble) in question.

Every regime possesses a ceratin ”amount” of universality.

We will discuss only the local bulk universality (to be found from the room

acoustics up zeros of � - function, via quantum chaos).

Probability theory analogs: LLN, CLT, ”collective theorems”, Yu. Linnik

”emerging universality” QFT
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1.2 Linear Eigenvalue Statistics.

Take ’ : R! R and write the linear eigenvalue statistic

Nn[’] :=
nX
l=1

’(�(n)
l ) = Tr ’(Mn) =

Z
R
’(�)Nn(d�):

’ is known as the test function. In particular

Nn(�) : = ]f�(n)
l 2 �; l = 1; :::; ng

=
nX
l=1

��(�(n)
l ) = Nn[��]

is the Eigenvalue Counting Measure of eigenvalues and Nn = n�1Nn.
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Define

bulk N = f� 2 supp N : 9� > 0; lim
n!1

sup
j���j��

j�(�)��n(�)j = 0g:

We have forNn[’]:

� ’ is n-independent: global regime;

� ’n = ’((�� �0)Ln); Ln !1; nLn ! 0: intermediate bulk

regime;

� ’n = ’((�� �0)n�n(�0)): local bulk regime
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1.3 Typical Problems

(i) limn!1 n
�1Nn, global regime, selfaveraging, ”LLN”
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(ii) VarfNng, global and intermediatee regime, fluctuations, ”CLT”
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1.3 Typical Problems

(i) limn!1 n
�1Nn, global regime, selfaveraging, ”LLN”

(ii) VarfNng, global and intermediatee regime, fluctuations, ”CLT”

(iii) PfNn(�n) = kg; k 2 N; En(�n) = PfNn(�n) = 0g,
gap probability, local regime, spacings, universality

in particular �n = (�0; �0 + s=n�n(�0)); �0 2 bulk N for the

local bulk regime
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1.4 Hermitian Matrix Models

n� n hermitian random matrices with the law

Pn(dM) = Z�1
n expf�nTrV (M)gdM;

dM =
nY
j=1

dMjj

Y
1�j<k�n

d<Mjkd=Mjk;

V : R! R+ is a continuous function (potential), and

9 " > 0; L <1 V (�) � (2 + ") log(1 + j�j) > 0; j�j � L

V = �2=2 corresponds to the Gaussian Unitary Ensemble (GUE).
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1.5 Results (a collection)

(i) For any probability measure m on R; m(R) = 1 define (Gauss)

E [m] =
Z
V (�)m(d�)�

Z Z
log j�� �jm(d�)m(d�



In particular

v:p:
Z

supp N

�(�)d�
�� �

= �V 0(�)=2; � 2 supp N:

i.e., an analog of the LLN : Wigner, 52; Brezin et al, 79; A. Boutet de Monvel,

P., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07.

(ii) Var



In particular

v:p:
Z

supp N

�(�)d�
�� �

= �V 0(�)=2; � 2 supp N:

i.e., an analog of the LLN : Wigner, 52; Brezin et al, 79; A. Boutet de Monvel,

P., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07



� V 0 is Lip 1;

� there exists a closed interval [a; b] � � = suppN such that

sup
�2[a;b]

jV 000(�)j � C1 <1; 0 < inf
�2[a;b]

�(�):

Then we have for any d > 0:

(i)

sup
�2[a+d;b�d]

j�n(�)� �(�)j � Cn�2=9;

i.e., [a+ d; b� d] belongs to bulkN ;
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(ii) if p
(n)
l ; l = 1; 2; ::: are the marginals of the joint probability density of

eigenvalues, then for any �0 2 [a+ d; b� d]

lim
n!1

[�n(�0)]�lp(n)
l

�
�0 +

x1

n�n(�0)
; :::; �0 +

xl
n�n(�0

������; 8.701 8.8637 1.6375125



(iii) if En(�n) = Pf�(n)
l =2 �n; l = 1; :::; ng is the gap probability of

the ensemble and �n = (�0; �0 + s=n�(�0)) �0 2 [a+ d; b� d],
then

lim
n!1

P(�n) = det(1� S(s));

where

(S(s)f)(x) =
Z s

0

sin�(x� y)
�(x� y)

f(y)dy; x 2 [0; s]:

Dyson, 61, 73; P., Shcherbina, 97, 07; Deift et al 99

More if �(�0) = 0;1 (singular points (e.g. edge) universality).
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2 Proof (outline)

2.1 Orthogonal Polynomials Techniques

Weyl integration formula for the joint eigenvalue density

pn(�1; :::; �n) = Q�1
n e�n

Pn
k=1 V (





 
(n)
l = e�nV=2P

(n)
l and Kn(�; �) =

Pn�1
l=0  

(n)
l (�) (n)

l (�),Z
Kn(�; �)Kn(�; �)d� = Kn(�; �):
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(n)
l = e�nV=2P

(n)
l and Kn(�; �) =

Pn�1
l=0  

(n)
l (�) (n)

l (�),Z
Kn(�; �)Kn(�; �)d� = Kn(�; �):

Then the marginals p
(n)
l of pn are given by the determinant formulas

p
(n)
l (�1; :::; �l) : =

Z
pn(�1; :::; �n)d�l+1:::d�n

= (n:::(n� l + 1))�1 detfKn(�j ; �k)glj;k=1:

Determinant formulas imply:

(a) Efn�1Nn[’]g =
R
’(�)�n(�)d�; �n(�) = Kn(�; �);
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(b) VarfNn[’]g = 1
2

R R
(’(�1)� ’(�2))2K2

n(�1; �2)d�1d�2;
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(b) VarfNn[’]g = 1
2

R R
(’(�1)� ’(�2))2K2

n(�1; �2)d�1d�2;

(c) PfNn(�) = 0g = det(1�Kn(�)), where

(Kn(�)f)(�) =
Z

�
Kn(�; �)f(�)



These asymptotics were found by Deift et al, 99 and lead to the solution of

(iii), i.e., the universality of the local bulk regime of the hermitian matrix

models, and (ii), i.e., the limiting laws of fluctuations of linear eigenvalue

statistics, the CLT in particular, P., 06, for real analytic potentials.

16



These asymptotics were found by Deift et al, 99 and lead to the solution of

(iii), i.e., the universality of the local bulk regime of the hermitian matrix

models, and (ii), i.e., the limiting laws of fluctuations of linear eigenvalue

statistics, the CLT in particular, P., 06, for real analytic potentials.

On the other hand, in P., Shcherbina 97, 07 the universality of the local bulk

regime of hermitian matrix models is proved for globally C2 and locally C3

potentials (see above theorem), basing on the orthogonal polynomial

techniques, in particular on the above integral representation for Kn, but

NOT using asymptotics of corresponding orthogonal polynomials.

16



These asymptotics were found by Deift et al, 99 and lead to the solution of

(iii), i.e., the universality of the local bulk regime of the hermitian matrix

models, and (ii), i.e., the limiting laws of fluctuations of linear eigenvalue

statistics, the CLT in particular,



These asymptotics were found by Deift et al, 99 and lead to the solution of

(iii), i.e., the universality of the local bulk regime of the hermitian matrix

models, and (ii), i.e., the limiting laws of fluctuations of linear eigenvalue

statistics, the CLT in particular, P., 06, for real analytic potentials.

On the other hand, in P., Shcherbina 97, 07 the universality of the local bulk

regime of hermitian matrix models is proved for globally C2 and locally C3

potentials (see above theorem), basing on the orthogonal polynomial

techniques, in particular on the above integral representation for Kn, but

NOT using asymptotics of corresponding orthogonal polynomials.

In P., Shcherbina, 97 sin(�x)=(�x) is obtained via its Taylor expansion.

In P., Shcherbina, 07 sin(�x)=(�x) is obtained as solution of a non-linear

integro-differential equation.
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2.2 Integro-differential Equation for Rescaled Reproducing

Kernel

We start from the integral representation à la determinant formulas

n�1Kn(�; �) = Q�1
n;2e

�n(V (�)+V (�))=2

�
Z nY

j=2

d�je
�nV (�j)(�� �j)(�� �j)

Y
2�j<k�n

(�j � �k)2
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Differentiate the representation with respect to x to obtain the identity

@

@x
Kn(x; y) = �1

2
V 0(�0 + x=n)Kn(x; y)

+
Z
Kn(x0; x0)Kn(x; y)�Kn(x; x0)Kn(x0; y)

x� x0
dx0:
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Differentiate the representation with respect to x to obtain the identity

@

@x
Kn(x; y) = �1

2
V 0(�0 + x=n)Kn(x; y)

+
Z
Kn(x



and write

@

@x
Kn(x; y) = �

Z
Kn(x; x0)K



and write

@

@x
Kn(x; y) = �

Z
Kn(x; x0)K



We prove next that under the conditions of theorem we have uniformly in

jxj; jyj < L; �0 2 [a+ d; b� d]:���� @@xKn(x; y) +
@

@y
Kn(x; y)

���� � C �n�1=8 + jx� yjn�2
�
;
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Now, if

K�n(x) = Kn(x; 0)1jxj�L +Kn(L; 0)(1 + L � x)1L<x�L+1

+ Kn(�L; 0)(1 + L+ x)1�L�1�x<�L;

then for jyj � L

@

@y
K�n(y) =

Z
jx′j�2L=3

K�n(x0)K�n(y � x0)
x0

dx0 +O(L�1);

and

Z
jK�n(x)j2dx � 1;

Z ���� ddxK�n(x)
����2dx � 1:
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2.3 Asymptotic Solution of Equation

Consider the Fourier transform

bK�n(p) =
Z
K�n(x)eipxdx; K�n(x) = (2�)�1

Z bK�n(p)e�ipydp:

Then we have from



SinceK�n is ”asymptotically even”Z
jbK�n(p)� bK�n(�p)j2dp

= 2�
Z
jK�n(x)�K�n(�x)j2dx � Cn�1=8 log3 n:

we obtain the Fourier form of the above integro-differential equation:Z bK�n(p)
�Z p

0

bK�n(p0)dp0 � p
�
e�ipydp = O(L�1); jyj � L=3:
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SinceK�n is ”asymptotically even”Z
jbK�n(p)� bK�n(�p)j2dp

= 2�
Z
jK�n(x)�K�n(�x)j2dx � Cn�1=8 log3 n:

we obtain the Fourier form of the above integro-differential equation:Z bK�n(p)
�Z p

0

bK�n(p0)dp0 � p
�
e�ipydp = O(L�1); jyj � L=3:

Besides, since Kn is positive definite bK�n is ”asymptotically non-negative”:Z bK�n(p)jf̂(p)j2dp � �Cjjf jj2L2(R)(n
�1=8 log4 n+O(L�1)):
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Now consider the functions

Fn(p) =
Z p

0

bK�n(p0)dp0:

Since pbK�n 2 L2(R), the sequence fFng consists of functions that are of

uniformly bounded variation, uniformly bounded and equicontinuous on R.

Thus fFng



Now consider the functions

Fn(p) =
Z p

0

bK�n(p0)dp0:

Since pbK�n 2 L2(R), the sequence fFng consists of functions that are of

uniformly bounded variation, uniformly bounded and equicontinuous on R.

Thus fFng is a compact family with respect to the uniform convergence.

Hence, the limit F of any subsequence fFnk
g possesses the properties:

(a) F is bounded and continuous;

(b) F (p) = �F (�p) ;
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Now consider the functions

Fn(p) =
Z p

0

bK�n(p0)dp0:

Since pbK�n 2 L2(R), the sequence fFng consists of functions that are of

uniformly bounded variation, uniformly bounded and equicontinuous on R.

Thus fFng is a compact family with respect to the uniform convergence.

Hence, the limit F of any subsequence fFnk
g possesses the properties:

(a) F is bounded and continuous;

(b) F (p) = �F (�p) ;

(c) F (p) � F (p0), if p � p0;
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Now consider the functions

Fn(p) =
Z p

0

bK�n(p0)dp0



Now consider the functions

Fn(p) =
Z p

0

bK�n(p0)dp0



(e) F satisfies the following equation, valid for any smooth function g of

compact support: Z
(F (p)� p)g(p)dF (p) = 0:

The last property implies that F (p) = p or F (p) = const, hence it follows

from (a) – (c) that

F (p) = p1jpj�p0
+ �� sign(p) 1jpj�p0

;

where p0 = ��(�0) by (d).

We conclude that the equation is uniquely soluble, thus the sequence fFng
converges uniformly on any compact to the above F . This imply the weak
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convergence of the sequence fK�ng to the function

K�(x) =
sin(��(�0)x)
��(�0)x

:
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convergence of the sequence fK�ng to the function

K�(x) =
sin(��(�0)x)
��(�0)x

:

But weak convergence implies

lim
n!1

Kn(x; y) = K�(x� y):

uniformly in (x; y), varying on a compact set of R2, because
d

dx
K�n 2 L2(R):
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