Universality of Local Bulk Regime for Hermitian Matrix Models

L. Pastur Ukraine

1 Introduction

1.1 Asymptotic "Philosophy" of RMT

Let M_n be a n S a 2G - 93 10. 9091 c T @ F 401 - 437.1 @ 6 9091 <math>c b

(ii) \overline{N}_n ! N weakly as n ! 1;

(ii)
$$\overline{N}_n$$
 ! N weakly as n ! 1;
(iii) $N() = {R \choose d}$

Property (ii) fixes the global scale of the spectral axis, yielding

$$]f_{I}^{(n)} 2 : I = 1; ...; ng' nN(),$$

i.e., $(nN())^{-1}$ is the typical eigenvalue spacing for large n in

.

(ii)
$$\overline{N}_n$$
 ! N weakly as n ! 1;
(iii) $N() = {R \ ()d :}$
Property (ii) fixes the global scale of the spectral axis, yielding
 $\int f_{l}^{(n)} 2 : l = 1; ...; ng ' nN(),$
i.e., $(nN())^{-1}$ is the typical eigenvalue spacing for large n in .
Assume supp N , then
does not depend on n (in the global scale), i.e., $nN() ' n$: global
(macroscopic) regime;

(ii)
$$\overline{N}_{n}$$
 ! N weakly as n ! 1;
(iii) $N() = {R \ ()}d :$
Property (ii) fixes the global scale of the spectral axis, yielding
 $\int f_{l}^{(n)} 2 : l = 1; ...; ng ' nN(),$
i.e., $(nN())^{-1}$ is the typical eigenvalue spacing for large n in .
Assume supp N , then
does not depend on n (in the global scale), i.e., $nN() ' n$: global
(macroscopic) regime;
 $nN() ' 1$: local (microscopic) regime;

(ii)
$$\overline{N}_{n}$$
 ! N weakly as n ! 1;
(iii) $N() = {R \choose d}$:

Property (ii) fixes the global scale of the spectral axis, yielding

$$]f_{I}^{(n)} 2 : I = 1; ...; ng' nN(),$$

i.e., $(nN())^{-1}$ is the typical eigenvalue spacing for large n in .

Assume Supp *N*, then

Every regime possesses a ceratin "amount" of universality.

Every regime possesses a ceratin "amount" of universality.

We will discuss only the local bulk universality (to be found from the room acoustics up zeros of - function, via quantum chaos).

Every regime possesses a ceratin "amount" of universality.

We will discuss only the local bulk universality (to be found from the room acoustics up zeros of - function, via quantum chaos).

Probability theory analogs: LLN, CLT, "collective theorems", Yu. Linnik

"emerging universality" QFT

1.2 Linear Eigenvalue Statistics.

Take ': R ! R and write the *linear eigenvalue statistic* $N_n['] := \bigvee_{l=1}^{n} ' \binom{n}{l} = \operatorname{Tr}' (M_n) = \bigcup_{R}^{Z} ' \binom{n}{l} = \operatorname{Tr}' (M_n) = \operatorname{Tr}' (M_n) = \operatorname{Tr}' \binom{n}{l} = \operatorname{Tr}' = \operatorname{Tr}' \binom{n}{l} = \operatorname{Tr}' = \operatorname{T$

is known as the test function. In particular

$$N_n() :=]f_{l}^{(n)} 2 ; l = 1; ...; ng$$

= X^n $\binom{(n)}{l} = N_n[]$

is the Eigenvalue Counting Measure of eigenvalues and $N_n = n^{-1} N_n$.

Define

bulk N = f 2 supp N : 9 > 0; $\lim_{n! \to j} \sup_{j \in J} j(j) = 0g$:

We have for $N_{\Omega}[']$:

' is *n*-independent: global regime;

 $'_n = '((_0)L_n); L_n ! 1; nL_n ! 0: intermediate bulk regime;$

 $'_n = ((_0)n_n(_0))$: local bulk regime

1.3 Typical Problems

(i) $\lim_{n!} n^{-1} N_{n'}$, global regime, selfaveraging, "LLN"

1.3 Typical Problems

(i) $\lim_{n!} n^{-1} N_{n}$, global regime, selfaveraging, "LLN"

(ii) $Var f N_n g$, global and intermediatee regime, fluctuations, "CLT"

1.3 Typical Problems

(i) $\lim_{n!} n^{-1} N_{n}$, global regime, selfaveraging, "LLN"

(ii) $Var f N_n g$, global and intermediatee regime, fluctuations, "CLT"

(iii)
$$\mathsf{P}fN_n(n) = kg; k 2 N; E_n(n) = \mathsf{P}fN_n(n) = 0g,$$

gap probability, local regime, spacings, universality

in particular $_{n} = (_{0}; _{0} + S = n _{n} (_{0})); _{0} 2$ bulk *N* for the local bulk regime

1.4 Hermitian Matrix Models

n n hermitian random matrices with the law

j=1 1 j < k n $V : \mathbb{R}$ / \mathbb{R}_+ is a continuous function (potential), and

$$9'' > 0; L < 1 V() (2 + ') \log(1 + j j) > 0; j j L$$

 $V = {}^{2}$ = 2 corresponds to the Gaussian Unitary Ensemble (GUE).

1.5 Results (a collection)

(i) For any probability measure m on \mathbb{R} ; $m(\mathbb{R}) = 1$ define (*Gauss*) Z Z Z E[m] = V()m(d) $\log j$ jm(d)m(d);

and let N

In particular

$$V:p: \sum_{\text{supp } N} \frac{()d}{()} = V^{\theta}()=2; 2 \text{ supp } N:$$

i.e., an analog of the LLN : *Wigner, 52; Brezin et al, 79; A. Boutet de Monvel, P., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07.*

(ii) $\operatorname{Var} f N_n['] g$ does not grow with *n* if ' 2

$$V:p: \sum_{\text{supp } N} \frac{()d}{()} = V^{\theta}()=2; 2 \text{ supp } N:$$

i.e., an analog of the LLN : Wigner, 52; Brezin et al, 79; A. Boutet de Monve, P., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07.te. V^{θ} is Lip 1; there exists a closed interval $[a; b] = \operatorname{supp} N$ such that $\sup_{2[a;b]} jV^{\theta \theta}(\)j \quad C_1 < 1; \quad 0 < \inf_{2[a;b]} (\):$

Then we have for any d > 0:

(i)

$$\sup_{2[a+d;b \ d]} j_{n}() \quad ()j \ Cn^{2=9};$$

i.e., $[a + d; b \quad d]$ belongs to bulk N;

(ii) if $p_l^{(n)}$; l = 1; 2; ... are the marginals of the joint probability density of eigenvalues, then for any $_0 2 [a + d; b \quad d]$

$$\lim_{n! \to I} [n(0)] p_{I}^{(n)} + \frac{X_{1}}{n(0)} = 0 + \frac{X_{I}}{n(0)}$$

(iii) if $E_n(n) = \mathbf{P} f_l^{(n)} \mathbf{2}_{n'}$, $l = 1, \dots, ng$ is the gap probability of the ensemble and $n = (0, 0 + S = n(0))_0 \mathbf{2} [a + d, b d],$ then

$$\lim_{n! \to 1} \mathbf{P}(n) = \det(1 \quad S(s));$$

where

$$(S(s)f)(x) = \int_{0}^{Z} \frac{\sin(x - y)}{(x - y)} f(y) dy; \ x \ 2 \ [0; s]:$$

Dyson, 61, 73; P., Shcherbina, 97, 07; Deift et al 99

More if $\begin{pmatrix} 0 \end{pmatrix} = 0$, 7 (singular points (e.g. edge) universality).

2 Proof (outline)

2.1 Orthogonal Polynomials Techniques

Weyl integration formula for the joint eigenvalue density

$$p_n(1; ...; n) = Q_n^1 e^{n P_{k=1}^n V(1)}$$

2 Proof (outline)

2.1 Orthogonal Polynomials Techniques

Weyl integration formula for the joint eigenvalue density

*p*_n

$$\begin{array}{c} (n) \\ I \\ \end{array} = e^{-nV=2} P_{I}^{(n)} \text{ and } K_{n}(;) = \begin{array}{c} P_{I-1} & (n) \\ I=0 & I \\ \end{array} (;) & (n) \\ I \\ \end{array} (;) \\ K_{n}(;) & d \\ \end{array} = K_{n}(;):$$

Then the marginals $p_{I}^{(n)}$ of p_{n} are given by the determinant formulas $Z_{I}^{(n)}(1, \dots, 1) := p_{n}(1, \dots, n)d_{I+1} \dots d_{n}$ $= (n \dots (n + 1))^{-1} \det fK_{n}(j, k)g_{j,k=1}^{I}$

Determinant formulas imply:

(a)
$$\mathbf{E}fn^{-1}N_{n}[']g = {\overset{\mathsf{R}}{\overset{\circ}{}}}'()_{n}()d; _{n}() = K_{n}(;);$$

(b)
$$\operatorname{Var} fN_n[']g = \frac{1}{2} R^R ('(1) '(2))^2 K_n^2(1; 2) d_1 d_2;$$

(b) **Var**
$$fN_n[']g = \frac{1}{2}$$

(b)
$$\operatorname{Var} fN_{n}[']g = \frac{1}{2} \overset{R R}{('(1) '(2))^{2}} K_{n}^{2}(1; 2) d_{1} d_{2};$$

(c) $\operatorname{P} fN_{n}() = 0g = \det(1 K_{n}()), \text{ where}$
 Z
 $(K_{n}()f)() = K_{n}(;)f()$

On the other hand, in *P., Shcherbina 97, 07* the universality of the local bulk regime of hermitian matrix models is proved for globally C^2 and locally C^3 potentials (see above theorem), basing on the orthogonal polynomial techniques, in particular on the above integral representation for K_n , but NOT using asymptotics of corresponding orthogonal polynomials.

On the other hand, in P., Shcherbina 97, 07 the universality of the local bulk

On the other hand, in *P., Shcherbina 97, 07* the universality of the local bulk regime of hermitian matrix models is proved for globally C^2 and locally C^3 potentials (see above theorem), basing on the orthogonal polynomial techniques, in particular on the above integral representation for K_n , but NOT using asymptotics of corresponding orthogonal polynomials.

In *P.*, Shcherbina, 97 sin(x) = (x) is obtained via its Taylor expansion.

In *P., Shcherbina*, 07 Sin(x) =(x) is obtained as solution of a non-linear integro-differential equation.

2.2 Integro-differential Equation for Rescaled Reproducing Kernel

We start from the integral representation à la determinant formulas

2.2 Integro-differential Equation for Rescaled Reproducing Kernel

We start from the integral representation `

Differentiate the representation with respect to X to obtain the identity

$$\frac{\overset{@}{=}}{\overset{@}{=}} K_n(x;y) = \frac{1}{2} V^{\theta}(_0 + x=n) K_n(x;y) + \frac{K_n(x^{\theta};x^{\theta}) K_n(x;y) - K_n(x;x^{\theta}) K_n(x^{\theta};y)}{x - x^{\theta}} dx^{\theta}$$

Differentiate the representation with respect to X to obtain the identity

$$\frac{@}{@x}K_n(x;y) = \frac{1}{2}V^{\ell}(0 + x=n)K_n(x;y)$$

$$K_n(x,y)K_n(x;y) = \frac{1}{2}K_n(x,y)K_n(x;y)$$

Differentiate the representation with respect to X to obtain the identity

$$\frac{@}{@x}K_n(x;y) = \frac{1}{2}V^{\ell}(0 + x=n)K_n(x;y)$$

$$K_n(x,y)K_n(x;y) = \frac{1}{2}K_n(x,y)K_n(x;y)$$

and write

 $\frac{@}{@x}K_n(x;y) = \sum_{n=1}^{Z} \frac{K_n(x;x^0)K_n(x^0;y)}{K_n(x^0;y)}$

and write

 $\frac{@}{@x}K_n(x;y) = \sum_{n=1}^{Z} \frac{K_n(x;x^0)K_n(x^0;y)}{K_n(x^0;y)}$

We prove next that under the conditions of theorem we have uniformly in $jxj; jyj < L; \quad 0 \ 2 \ [a + d; b \ d]:$

$$\frac{@}{@x}K_n(x;y) + \frac{@}{@y}K_n(x;y) \qquad C \quad n^{1=8} + jx \quad yjn^2 ;$$

We prove next that under the conditions of theorem we have uniformly in

We prove next that under the conditions of theorem we have uniformly in $jxj; jyj < L; \quad 0 \quad 2 \quad [a + d; b \quad d]:$

$$\frac{@}{@x}K_n(x;y) + \frac{@}{@y}K_n(x;y) \qquad C \quad n^{1=8} + jx \quad yjn^2 ;$$

 $jK_n(x;y) = K_n(0;y x)j = Cjxj n^{1=8} + jx yjn^2;$

We prove next that under the conditions of theorem we have uniformly in $jxj; jyj < L; \quad 0 \quad 2 \quad [a + d; b \quad d]:$

$$\frac{@}{@x}K_n(x;y) + \frac{@}{@y}K_n(x;y) \qquad C \quad n^{1=8} + jx \quad yjn^2 ;$$

 $jK_n(x;y) = K_n(0;y x)j = Cjxj n^{1=8} + jx yjn^2;$

Now, if

$$K_{n}(x) = K_{n}(x; 0)\mathbf{1}_{jxj} + K_{n}(L; 0)(1 + L - x)\mathbf{1}_{L < x - L + 1} + K_{n}(L; 0)(1 + L + x)\mathbf{1}_{L - 1 - x < - L};$$

2.3 Asymptotic Solution of Equation

Consider the Fourier transform

Then we have from $n^{-1}K_n(;) =$

Since K_n is "asymptotically even" Z $j \aleph_n(p) \qquad \aleph_n(p) j^2 dp$ Z $= 2 \qquad j K_n(x) \qquad K_n(-x) j^2 dx \qquad Cn^{-1-8} \log^3 n$

we obtain the Fourier form of the above integro-differential equation:

$$Z = Z \xrightarrow{p}_{0} \aleph_{n}(p^{0}) dp^{0} \quad p \in {}^{ipy}dp = O(L^{-1}); jyj \quad L=3:$$

Since K_n is "asymptotically even" $j \aleph_n(p) \quad \aleph_n(p) j^2 dp$ $= 2 \quad iK_n(x) \quad K_n(x)i^2 dx \quad Cn^{-1=8} \log^3 n$ we obtain the Fourier form of the above integro-differential equation: $\aleph_n(p) \stackrel{Z \ p}{\longrightarrow} \aleph_n(p^{\theta}) dp^{\theta} \quad p \ e^{ipy} dp = O(L^{-1}); jyj \quad L=3:$ Besides, since K_n is positive definite \aleph_n is "asymptotically non-negative": 7 $\aleph_n(p)j\hat{f}(p)j^2dp$ $Cjjfjj_{L^2(\mathbb{R})}^2(n^{1=8}\log^4 n + O(L^{-1})):$

$$F_n(p) = \int_0^{Z_p} \aleph_n(p^{\ell}) dp^{\ell}$$

Since $p \not{R}_n 2 L^2(\mathbb{R})$, the sequence $fF_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on \mathbb{R} . Thus $fF_n g$

$$F_n(p) = \int_0^{\perp} p \aleph_n(p^{\theta}) dp^{\theta}$$

Since $p \not R_n 2 L^2(\mathbb{R})$, the sequence $fF_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on \mathbb{R} . Thus $fF_n g$ is a compact family with respect to the uniform convergence. Hence, the limit F of any subsequence $fF_{n_k}g$ possesses the properties:

(a) F is bounded and continuous;

(b) F(p) = F(p);

$$F_n(p) = \int_0^{\perp} p \aleph_n(p^{\ell}) dp^{\ell}$$

Since $p \aleph_n 2 L^2(\mathbb{R})$, the sequence $f F_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on R. Thus $fF_{n,q}$ is a compact family with respect to the uniform convergence. Hence, the limit F of any subsequence $fF_{D_k}g$ possesses the properties:

- (a) F is bounded and continuous;
- (b) F(p) = F(p);(c) $F(p) = F(p^{\theta}), \text{ if } p = p^{\theta};$

$$F_n(p) = \int_0^{\mathbb{Z}_p} \aleph_n(p^{\ell}) dp^{\ell}$$

$$F_n(p) = \int_0^{\mathbb{Z}_p} \aleph_n(p^{\ell}) dp^{\ell}$$

(e) F satisfies the following equation, valid for any smooth function g of compact support:
Z

$$(F(p) \ p)g(p)dF(p) = 0:$$

The last property implies that F(p) = p or F(p) = const, hence it follows from (a) – (c) that

$$F(p) = p \mathbf{1}_{jpj \ p_0} + \text{sign}(p) \mathbf{1}_{jpj \ p_0}$$

where $p_0 = (0)$ by (d).

We conclude that the equation is uniquely soluble, thus the sequence fF_ng converges uniformly on any compact to the above F. This imply the weak

convergence of the sequence fK_ng to the function

$$\mathcal{K}(x) = \frac{\sin((x))}{(x)}$$

convergence of the sequence fK_ng to the function

$$K(x) = \frac{\sin((x))}{(x)}$$

But weak convergence implies

$$\lim_{n! \to 1} K_n(x; y) = K (x + y);$$

uniformly in (x; y), varying on a compact set of \mathbb{R}^2 , because $\frac{d}{dx}K_n 2 L^2(\mathbb{R})$: