Universality of Local Bulk Regime for Hermitian Matrix Models

L. Pastur Ukraine

1 Introduction

1.1 Asymptotic "Philosophy" of RMT

Let M_n be a n S a 2G-93 10. 9091 c TQF401-41.1865001 [(j)

(ii) \overline{N}_n ! N weakly as n ! 1;

(ii)
$$
\overline{N}_n
$$
 ! *N* weakly as *n* ! 1;
(iii) $N() = \begin{bmatrix} R \\ Q \end{bmatrix}$

Property (ii) fixes the global scale of the spectral axis, yielding

$$
Jf\, \bigl({n \choose l }\, 2 \quad : \, l=1; \, \ldots; ng\, \bigl({n \choose l }\, \bigr).
$$

i.e., $(nN($ $))$ $^{-1}$ is the typical eigenvalue spacing for large n in $^{-1}$.

(ii)
$$
\overline{N}_n
$$
 I N weakly as *n I* - 1;
\n(iii) $N() = {R \atop |}$ (*)d* :
\nProperty (ii) fixes the global scale of the spectral axis, yielding
\n*Jf* ${n \choose l} \cdot 2 : l = 1; ...; ng \cdot nN()$,
\ni.e., $(nN())^{-1}$ is the typical eigenvalue spacing for large *n* in
\nAssume *supp N*, then
\ndoes not depend on *n* (in the global scale), i.e., $nN() \cdot n$: global
\n(macroscopic) regime;

(ii)
$$
\overline{N}_n
$$
 I N weakly as *n I* - 1 ;
\n(iii) $N()$ = $\begin{bmatrix} R \\ Q \end{bmatrix}$ *(*) *d* :
\nProperty (ii) fixes the global scale of the spectral axis, yielding
\n $\int f \begin{bmatrix} n \\ l \end{bmatrix} 2$: $l = 1$; *(m n N (*)*)*,
\ni.e., $(nN()$) ¹ is the typical eigenvalue spacing for large *n* in
\nAssume *(supp N*, then
\ndoes not depend on *n* (in the global scale), i.e., *n N (*) *' n*: global
\n(macroscopic) regime;
\n*n N (*) *'* 1: local (microscopic) regime;

(ii)
$$
\overline{N}_n!
$$
 N weakly as $n!$ 1;
(iii) $N() = \begin{bmatrix} R \\ Q \end{bmatrix}$

Property (ii) fixes the global scale of the spectral axis, yielding

$$
Jf\, \bigl({n \choose l }\, 2 \quad : \, l=1; \, \ldots; ng\, \bigl({n \choose l }\, \bigr).
$$

i.e., $(nN($ $))$ $^{-1}$ is the typical eigenvalue spacing for large n in $^{-1}$.

Assume supp N, then

Every regime possesses a ceratin "amount" of universality.

Every regime possesses a ceratin "amount" of universality.

We will discuss only the local bulk universality (to be found from the room acoustics up zeros of - function, via quantum chaos).

Every regime possesses a ceratin "amount" of universality.

We will discuss only the local bulk universality (to be found from the room acoustics up zeros of - function, via quantum chaos).

Probability theory analogs: LLN, CLT, "collective theorems", *Yu. Linnik*

"emerging universality" QFT

1.2 Linear Eigenvalue Statistics.

Take ' : R ! R and write the *linear eigenvalue statistic* $N_n[$ ' $]$:= $\begin{pmatrix} n \\ n \end{pmatrix}$ $l=1$ $\binom{10}{1}$ = Tr ' (M_n) = Z R $'$ () $N_n(d)$:

is known as the *test function*. In particular

$$
N_n() : = \int f \, \binom{n}{l} \, 2 \quad ; \quad l = 1; \dots; ng
$$
\n
$$
= \bigtimes^{n} \, \binom{n}{l} = N_n[]
$$
\n
$$
= 1
$$

is the Eigenvalue Counting Measure of eigenvalues and $N_n = n^{-1} N_n$.

Define

bulk $N = f$ 2 supp $N : 9 > 0$; lim n!1 sup j j j () \qquad n() j = 0 g :

We have for N_n [']:

 $'$ is n -independent: global regime;

 $n = '(($ ($_0)$ L_n); L_n ! 1; nL_n ! 0: intermediate bulk regime;

 $n' = '((\qquad 0)\nmid n(_0))$: local bulk regime

1.3 Typical Problems

(i) $\lim_{n \to \infty} 1 \cdot n^{-1} N_n$, global regime, selfaveraging, "LLN"

1.3 Typical Problems

(i) $\lim_{n \to \infty} 1 \cdot n^{-1} N_n$, global regime, selfaveraging, "LLN"

(ii) $VarfN_ng$, global and intermediatee regime, fluctuations, "CLT"

1.3 Typical Problems

(i) $\lim_{n \to \infty} 1 \cdot n^{-1} N_n$, global regime, selfaveraging, "LLN"

(ii) $VarfN_ng$, global and intermediatee regime, fluctuations, "CLT"

(iii)
$$
\mathbf{PfN_n}(n) = kg; k 2 N; E_n(n) = \mathbf{PfN_n}(n) = 0g
$$

gap probability, local regime, spacings, universality

in particular $n = (0, 0, 0 + S = n, (0))$; $(0, 2)$ bulk N for the local bulk regime

1.4 Hermitian Matrix Models

 n n hermitian random matrices with the law

$$
P_n(dM) = Z_n^{-1} \exp f \quad n \text{Tr} \, V(M) \, g dM;
$$
\n
$$
dM = \begin{cases} \n\text{d}M_{jj} & \text{d} < M_{jk} \, d = M_{jk}; \\ \n\text{d} & \text{d} < M_{jk} \, d = M_{jk}; \n\end{cases}
$$

 $V: \mathsf{R}$ / R_+ is a continuous function (potential), and

 $9'' > 0$; $L < 1$ $V()$ $(2 + 7) \log(1 + j) > 0$; $j j L$

 $V =$ ²=2 corresponds to the Gaussian Unitary Ensemble (GUE).

1.5 Results (a collection)

(i) For any probability measure m on R ; $m(R) = 1$ define (*Gauss*)
 $\frac{Z}{Z}$ $E[m] =$ Z $V()m(d)$ Z Z $\log j$ jm(d)m(d);

and let N

In particular

$$
\frac{Z}{\text{supp } N} = V^{\ell} () = 2; \quad 2 \text{ supp } N.
$$

i.e., an analog of the LLN : *Wigner, 52; Brezin et al, 79; A. Boutet de Monvel, P., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07*.

(ii) $VarfN_n[']g$ does not grow with n if ' 2

In particular

V.p:
\n
$$
\frac{2}{\text{supp } N}
$$
\n*V* = V^{θ} ()=2; 2 supp N:
\ni.e., an analog of the LLN : Wigner, 52; Brezin et al, 79; A. Boutet de **Monve**,
\nP., Shcherbina, 95; Deift et al 98; Johansson, 98; P., Shcherbina, 07.
\n**1**

i.e., an analog of the LLN : *Wigner, 52; Brezin et al, 79; A. Boutet de Monvel,* $\boldsymbol{\varOmega}$

 V^{θ} is Lip 1;

there exists a closed interval $[a, b]$ = supp N *such that*

$$
\sup_{2[a;b]} jV^{\text{NN}}(x,y) \quad C_1 < 1 \quad 0 < \inf_{2[a;b]}(x,y)
$$

Then we have for any $d > 0$:

(i)

$$
\sup_{2[a+d; b \ d]} j_n() \qquad ()j \qquad Cn^{2=9};
$$

i.e., $[a + d, b]$ d *belongs to bulk N* \cdot

(ii) if $p_l^{(n)}$; $l = 1, 2, ...$ are the marginals of the joint probability density of eigenvalues, then for any $\int_{0}^{1} 2[a + d, b]$

$$
\lim_{n \to \infty} [n(n) \cdot n] \cdot \left(\frac{p(n)}{p(n)} \right) \cdot \frac{x_1}{p(n+1)} \cdot \dots \cdot 0 + \frac{x_1}{p(n+1)} \cdot \dots
$$

(iii) if $E_n(n) = \mathbf{P}f(n)$ $\begin{array}{cc} \binom{11}{1} & 2 & n; \end{array}$ $l = 1$; :::; ng is the gap probability of *the ensemble and* $n = (0, 0, 0 + S = n, 0)$ $(0, 0, 0, 0 + S = n, 0)$ *then*

$$
\lim_{n! \to 1} \mathbf{P}(\mathbf{p}) = \det(\mathbf{1} \mathbf{S}(\mathbf{S})).
$$

where

$$
(S(s) f)(x) = \int_{0}^{z} \frac{\sin (x + y)}{(x + y)} f(y) dy; \ x \ 2 [0; s].
$$

Dyson, 61, 73; P., Shcherbina, 97, 07; Deift et al 99

More if $\begin{pmatrix} 0 \end{pmatrix} = 0$; 1 (singular points (e.g. edge) universality).

2 Proof (outline)

2.1 Orthogonal Polynomials Techniques

Weyl integration formula for the joint eigenvalue density

$$
p_n(\n\begin{array}{ccc}\n1 & \cdots & n\n\end{array}) = Q_n^1 e^{-n} \bigg|_{k=1}^p V(n)
$$

2 Proof (outline)

2.1 Orthogonal Polynomials Techniques

Weyl integration formula for the joint eigenvalue density

 p_n

$$
\binom{n}{l} = e^{-nV-2} P_l^{(n)} \text{ and } K_n(\) \quad) = \begin{bmatrix} P_{n-1} & (n) \\ I_{n-0} & I_{n-1} \end{bmatrix} \binom{n}{l} \binom{n}{l}.
$$

$$
K_n(\) \quad K_n(\) \quad d = K_n(\)
$$

$$
\binom{n}{l} = e^{-nV-2} P_l^{(n)} \text{ and } K_n(;) = \begin{bmatrix} P_{n-1} & (n) \\ I_{=0} & I \end{bmatrix} \binom{n}{l} \binom{n}{l}.
$$

$$
K_n(;) K_n(;) d = K_n(;):
$$

$$
\binom{n}{l} = e^{-nV=2} P_l^{(n)} \text{ and } K_n(;) = \begin{bmatrix} P_{n-1} & (n) \\ I=0 & I \end{bmatrix} \binom{n}{l} \binom{n}{l}.
$$

$$
K_n(;)K_n(;)d = K_n(;):
$$

Then the marginals $p_I^{(n)}$ of p_n are given by the determinant formulas $p_1^{(n)}(1;...; 1)$ = $p_n(1;...; n)d_{1+1}...d_n$ = $(n::(n \quad 1+1))$ det $fK_n(j \mid k)g'_{i:k=1}$:

Determinant formulas imply:

(a)
$$
Efn^{-1}N_n[']g = \begin{bmatrix} R & () & n ()d & () & n () = K_n() & () & () \end{bmatrix}
$$

(b)
$$
VarfN_n[']g = \frac{1}{2} \mathsf{R} \mathsf{R} \left(\begin{array}{cc} (1 - 1) & (1 - 2) \end{array} \right)
$$

(b) **Var** *fN*_{*n*}[[']]
$$
g = \frac{1}{2}
$$

(b)
$$
Var f N_n[']g = \frac{1}{2} \begin{pmatrix} R & (1)(1) & (1)(2) \end{pmatrix}^2 K_n^2 (1/2)^2 (1/2)^2
$$

\n(c) $Pr N_n()$ = $0g = det(1 K_n()$), where
\n
$$
\begin{pmatrix} K_n(') f)'(1/2 & K_n(') f)'(1/2 \end{pmatrix}
$$

On the other hand, in *P., Shcherbina 97, 07* the universality of the local bulk regime of hermitian matrix models is proved for globally C^2 and locally C^3 potentials (see above theorem), basing on the orthogonal polynomial techniques, in particular on the above integral representation for K_n , but NOT using asymptotics of corresponding orthogonal polynomials.

On the other hand, in *P., Shcherbina 97, 07* the universality of the local bulk

On the other hand, in *P., Shcherbina 97, 07* the universality of the local bulk regime of hermitian matrix models is proved for globally C^2 and locally C^3 potentials (see above theorem), basing on the orthogonal polynomial techniques, in particular on the above integral representation for K_n , but NOT using asymptotics of corresponding orthogonal polynomials.

In *P., Shcherbina, 97* sin $(x) = (x)$ is obtained via its Taylor expansion.

In *P., Shcherbina, 07* sin(x) = (x) is obtained as solution of a non-linear integro-differential equation.

2.2 Integro-differential Equation for Rescaled Reproducing Kernel

We start from the integral representation à la determinant formulas

$$
n \, \binom{1}{n} \binom{n}{j} = \n \begin{array}{c}\n O_{n/2}^{-1} e^{-n(V(\cdot) + V(\cdot)) = 2} \\
 \binom{n}{1} e^{-n(V(\cdot))} \\
 (j) \quad \text{if} \quad j \leq k \leq n\n \end{array}
$$

2.2 Integro-differential Equation for Rescaled Reproducing Kernel

We start from the integral representation `

Differentiate the representation with respect to X to obtain the identity

$$
\frac{\partial}{\partial x}K_n(x;y) = \frac{1}{2}V^0(\quad 0 + x=n)K_n(x;y) + \frac{K_n(x^0; x^0)K_n(x^0; y)}{K_n(x^0; x^0)K_n(x^0; x^0)K_n(x^0; y)}dx^0
$$

Differentiate the representation with respect to X to obtain the identity

$$
\frac{\partial}{\partial x} K_n(x; y) = \frac{1}{2} V^{\theta} (0 + x = n) K_n(x; y)
$$

+
$$
K_n(x^{\theta}; x^{\theta}) K_n(x; y) = K_n(x; x^{\theta})
$$

Differentiate the representation with respect to X to obtain the identity

$$
\frac{\partial}{\partial x} K_n(x; y) = \frac{1}{2} V^{\theta} (0 + x = n) K_n(x; y)
$$

+
$$
K_n(x^{\theta}; x^{\theta}) K_n(x; y) = K_n(x; x^{\theta})
$$

and write

 $\frac{e}{\sqrt{e}X}K_n(x; y) = \frac{Z}{\sqrt{e}X}K_n(x; x^0)K_n(x^0; y)$

and write

 $\frac{e}{\sqrt{e}X}K_n(x; y) = \frac{Z}{\sqrt{e}X}K_n(x; x^0)K_n(x^0; y)$

We prove next that under the conditions of theorem we have uniformly in j xj; jyj < L; 0 2 [a + d; b d]:

$$
\frac{a}{\mathcal{A}}K_n(x;y)+\frac{a}{\mathcal{A}}K_n(x;y) \qquad C \quad n^{-1=8}+jx \quad yjn^{-2} ;
$$

We prove next that under the conditions of theorem we have uniformly in

We prove next that under the conditions of theorem we have uniformly in j x j ; j y $j < L$; \quad $_{0}$ 2 [a + d; b \quad d]:

$$
\frac{a}{\mathscr{A}}K_n(x;y)+\frac{a}{\mathscr{A}}K_n(x;y) \qquad C \quad n^{-1=8}+jx \quad yjn^{-2} ;
$$

 $jK_n(x;y)$ $K_n(0;y-x)j$ Cjxj n $^{1-8}+jx$ yjn 2 ;

$$
\frac{a}{\sqrt[\infty]{K_n(x; y)}} C; \frac{1}{\sqrt{xj} L} dx \frac{a}{\sqrt[\infty]{K_n(x; y)}}^2 C.
$$

We prove next that under the conditions of theorem we have uniformly in j x j ; j y $j < L$; \quad $_{0}$ 2 [a + d; b \quad d]:

$$
\frac{a}{\mathscr{A}}K_n(x;y)+\frac{a}{\mathscr{A}}K_n(x;y) \qquad C \quad n^{-1=8}+jx \quad yjn^{-2} ;
$$

 $jK_n(x;y)$ $K_n(0;y-x)j$ Cjxj n $^{1-8}+jx$ yjn 2 ;

$$
\frac{a}{\sqrt[\infty]{K_n(x; y)}} C; \frac{1}{\sqrt{xj} L} dx \frac{a}{\sqrt[\infty]{K_n(x; y)}}^2 C.
$$

Now, if

$$
K_n(x) = K_n(x;0)1_{jxj} + K_n(L;0)(1 + L \t x)1_{L < x \ L+1}
$$

+
$$
K_n(L;0)(1 + L + x)1_{L \t 1 \t x < L}
$$

2.3 Asymptotic Solution of Equation

Consider the Fourier transform

 $R_n(p) =$ Z $K_n(x)e^{ipx}dx$; $K_n(x) = (2)^{-1}$ $R_n(p)e^{ipy}dp$:

Then we have from $n^{-1}K_n$ (;) =

Since K_{n} is "asymptotically even" Z $jR_n(p)$ $\mathcal{R}_n(p)$ βdp $= 2$ Z j $K_n(x)$ $K_n(x)$ j 2 dx Cn $^{1-8}$ log 3 n:

we obtain the Fourier form of the above integro-differential equation:

$$
\begin{array}{ccccccc}\nZ & & Z & & \\
R_n(p) & & R_n(p^0) \, dp^0 & p & e^{-ipy} \, dp = O(L^{-1}) & jyj & L=3.\n\end{array}
$$

Since K_{n} is "asymptotically even" Z $jR_n(p)$ $\mathcal{R}_n(p)$ βdp $= 2$ Z j $K_n(x)$ $K_n(x)$ j 2 dx Cn $^{1-8}$ log 3 n: we obtain the Fourier form of the above integro-differential equation: Z $R_n(p)$ $2 p$ 0 $R_n(p^0)$ dp^o p e ^{ipy}dp = O(L¹); jyj L=3: Besides, since K_n is positive definite R_n is "asymptotically non-negative": Z $R_n(p) j \hat{f}(p) j^2 dp$ Cjjfjj²_{L2(R)}(n⁻¹⁼⁸log⁴n + O(L⁻¹)):

$$
F_n(p) = \int_0^L P_{n}(p^p) dp^p
$$

Since $p\mathcal{R}_n$ 2 $L^2(\mathsf{R})$, the sequence $f\mathcal{F}_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on R. Thus $f\overline{F}_n g$

$$
F_n(p) = \int_0^L P_{n}(p^p) dp^p
$$

Since $p\mathcal{R}_n$ 2 $L^2(\mathsf{R})$, the sequence $f\mathcal{F}_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on R. Thus $fF_{n}g$ is a compact family with respect to the uniform convergence. Hence, the limit F of any subsequence $fF_{n_k}g$ possesses the properties:

(a) \overline{F} is bounded and continuous;

(b) $F(p) = F(p)$;

$$
F_n(p) = \int_0^L P_{n}(p^p) dp^p
$$

Since $p\mathcal{R}_n$ 2 $L^2(\mathsf{R})$, the sequence $f\mathcal{F}_n g$ consists of functions that are of uniformly bounded variation, uniformly bounded and equicontinuous on R. Thus $fF_{n}g$ is a compact family with respect to the uniform convergence. Hence, the limit F of any subsequence $fF_{n_k}g$ possesses the properties:

- (a) \overline{F} is bounded and continuous;
- (b) $F(p) = F(p)$;
- (c) $F(p)$ $F(p^{\theta})$, if $p p^{\theta}$;

$$
F_n(p) = \int_0^z P_{n}(p^p) dp^p.
$$

$$
F_n(p) = \int_0^z P_{n}(p^p) dp^p.
$$

(e) \overline{F} satisfies the following equation, valid for any smooth function \overline{q} of compact support: Z

$$
(F(p) \quad p)g(p)dF(p) = 0:
$$

The last property implies that $F(p) = p$ or $F(p) = \text{const}$, hence it follows from $(a) - (c)$ that

$$
F(p) = p1_{jpj} p_0 + sign(p)1_{jpj} p_0;
$$

where $p_0 =$ $\binom{0}{0}$ by (d).

We conclude that the equation is uniquely soluble, thus the sequence $f\overline{\digamma}_{n}g$ converges uniformly on any compact to the above F . This imply the weak

convergence of the sequence $fK_{n}g$ to the function

$$
K(x) = \frac{\sin((x - 0)x)}{(0)x}
$$

convergence of the sequence $\mathit{fK}_\mathit{n} g$ to the function

$$
K(x) = \frac{\sin((x - 0)x)}{(0)x}
$$

But weak convergence implies

$$
\lim_{n! \to \infty} K_n(x; y) = K(x \ y)
$$

uniformly in (x, y) , varying on a compact set of R^2 , because \overline{a} $\frac{d}{dx}K_n$ 2 L²(R):