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1. Unitary random matrix ensembles

Some well-known facts (2):
� Eigenvalues of a random matrix follow a

determinantal point process with correlation kernel

Kn(x, y) = e−
n

2
V (x)e−

n

2
V (y)

n−1
∑

k=0

pk(x)pk(y),

pk orthonormal polynomials w.r.t. weight e−nV (x) on
R

� Kernel contains information about eigenvalues
◮ m-point correlation functions,

◮ largest eigenvalue distribution,

◮ gap probabilities, ...
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1. Unitary random matrix ensembles

� We are interested in local behavior of eigenvalues
near some reference point x∗

◮ local scaling limits of the kernel

lim
n→∞

1

cnβ
Kn(x

∗ +
u

cnβ
, x∗ +

v

cnβ
) =???

� in the bulk of the spectrum: sine kernel for β = 1,
(Dyson, Deift-Kriechterbauer-McLaughlin-Venakides-Zhou,
Bleher-Its, Pastur-Shcherbina)

� at the edge of the spectrum (generically): Airy
kernel for β = 2/3 (Forrester, Tracy-Widom, DKMVZ, BI,
Deift-Gioev)

−→ Universality
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2. Critical ensembles

� Universality breaks down in three cases:
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2. Critical ensembles

� Critical ensembles indicate a possible change of



2. Critical ensembles

� Critical ensembles indicate a possible change of
the number of intervals in the support
◮ two merging intervals, with one of them shrinking

at the same time
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2. Critical ensembles

� Critical ensembles indicate a possible change of
the number of intervals in the support
◮ birth of a cut away from the spectrum -

disappearing of an interval



2. Critical ensembles

� Including a parameter in the potential, V = Vt,
leads to those transitions

� Local eigenvalue behavior in the transitions is
described by double scaling limits of the eigenvalue
correlation kernel
◮ n → ∞ and t → tc at an appropriate rate

� no sine or Airy kernel in critical cases,
◮



3. The birth of a cut

The birth of a cut
� studied in physics literature by Eynard (2006)
� mathematics literature:

’independent and simultaneous’ works by
Mo, Bertola-Lee, and myself
(3 papers appeared on arXiv 19-26 november
2007)
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3. The birth of a cut

� We assume a potential V such that supp ρV = [a, b],
with a singular exterior point x∗ > b,



3. The birth of a cut

� limiting kernel in the birth of a cut-transition?
� double scaling limit where we let n → ∞ and at the

same time t → 1
◮ appropriate rate of convergence turns out to be

such that t − 1 = O
(

log n

n

)

◮ bounded number of eigenvalues expected in the
new cut

� We write
ν = cV (t − 1)

n

log n

and let n → ∞, t → 1 in such a way that

ν → ν0.
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3. The birth of a cut

The result:

� In the double scaling limit, we have

lim
1

(cn)1/2
Kn,t

(

x∗ +
u

(cn)1/2
, x∗ +

v

(cn)1/2

)

=











K
GUE(u, v; k) for k − 1

2
< ν0 < k + 1

2
, k ≥ 1,

0 for ν0 < 1/2,

K
GUE(u, v; k) =

e−
u2

+v2

2

2k
√

π(k − 1)!

Hk(u)Hk−1(v) − Hk(v)Hk−1(u)

u − v
,

where Hk are Hermite polynomials
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3. The birth of a cut

� t < 1, ν0 < 0: no eigenvalues expected, trivial
limiting kernel

� when ν0 increases, more eigenvalues ’move’ to the
new cut

� eigenvalues in the new cut seem to behave like the
eigenvalues in a finite GUE

� Discontinuity of limiting kernel when ν0 is a half
integer?
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3. The birth of a cut

1

(cn)1/2
Kn,t

(

x∗ +
u

(cn)1/2
, x∗ +

v

(cn)1/2

)

=























λ−

n,tK
GUE(u, v; k)

+λ+
n,tK

GUE(u, v; k + 1) + O
(

log n
n1

1







4. Riemann-Hilbert problems

� Goal is to find asymptotics for Y in the double
scaling limit

� Deift/Zhou steepest descent method
◮ series of transformations, ’undressing’ of the RH

problem
◮ Y 7→ T 7→ S 7→ R
◮ R(z) = I + o(1) ⇒ asymptotics for Y
◮ Two crucial features
→ Construction of g-function using modified

equilibrium measures
→ Construction of local parametrix near x∗ using

RH problem for Hermite polynomials
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